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Interruptibility and Task 
Engagement 

•  Link between task engagement and 
opportunity to interrupt (self-reported)  
–  More skilled a person is, less she will be 

irritated by an interruption 
–  More challenging a task is to a person,  

more irritated she will be with an interruption 
–  More concentrated a person is on a task, 

more she will be irritated by an interruption 



Theory of Multitasking 
•  Interference when two or more threads ask for the same 

resource at a time 

Example from [Borst2010] 



Theory of Multitasking 
•  Complex tasks require problem state saving/retrieving  

Example from [Borst2015] 



Can we automatically infer task engagement? 



TaskyApp 
•  Can smartphones sense that their users 

are busy (in an office setting)? 
•  TaskyApp data collection app 

–  Background sensing of: 
•  Device movement (raw and Google Activity 

Recognition reported), ambient sound, location 
•  BT/WiFi sensing 
•  Screen status, sound settings 
•  Google calendar events 

–  Data labelling via experience sampling and 
retroactive assisted labelling 



TaskyApp 
•  Data collection trial 

–  Volunteering (with a chance of winning 50€) 
–  Eight office workers for five weeks 

•  232 labelled instances (3035 unlabelled) 
•  Most data between 8am and 6pm 



TaskyApp – Data Analysis 
•  Linear regression fit 

with task difficulty (1-5 
on a Likert scale) as a 
dependent variable 
–  Movement data gives 

the most informative 
features 

–  The regression explains 
only a small part of the 
data 

Variable B(Std. Err.) t (Sig) 

Acc. Y mean -.038 (.02) -1.82 (.068) 

Acc. Z mean .026 (.02) 1.43 (.153) 

Acc mean 
intensity 

-.711 (.23) -3.04 (.003) 

Gyro. MCR -.003 (.00) -4.06 (.000) 

Gyro. variance .200 (.16) 1.24 (.217) 

Hour of day .067 (.02) 3.49 (.001) 

Reg.Constant 8.385 (2.31) 3.63 (.000) 

N=232; R2=0.19, F=8.64 (p=.000) 



TaskyApp – Data Analysis 
•  Classify a task engagement moment as either easy or 

difficult depending on the sensed features 
–  We experimented with different classifiers but Naïve Bayes 

seems to work best (probably due to the low amount of data) 
•  62.5% accuracy compared to 52.8% baseline 
•  Also, leads to favourable errors –  

few difficult tasks predicted as easy  



Task Engagement Inference 
•  Even in a restricted office setting smartphone-based task 

inference is challenging 
•  Movement features seem to be the most informative 
•  Next step – wearables 

–  Sense heart rate and  
skin temperature 
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