DEMONSTRATOR FOR EXTRACTING COGNITIVE LOAD FROM PUPIL DILATION FOR ATTENTION MANAGEMENT SERVICES

(Supported by FFG Contract No. 848430)

Benedikt Gollan (Research Studios Austria FG, Vienna)
Michael Haslgrübler (Institute for Pervasive Computing, JKU Linz)
Alois Ferscha (Institute for Pervasive Computing, JKU Linz)
UbiTtention WS ‘16
MOTIVATION

… to explore how the flood of notifications on different computing devices and in smart environments can be managed, in order to avoid information overload …

not how or if but when!
EYE SENSING

- **Blinks**
 - Absence of Blinks can indicate **strong concentration**

- **Pupil Fixations**
 - Lower duration → **Automation of information encoding/processing**
 - Higher duration → **Larger information gain** per fixation

- **Saccades**
 - Experts are repeatedly making **short saccades**
 - Experts show a more **structured scan path** than novices

- **Pupil Dilation (Task-evoked pupil response - TEPR)**
 - Pupil dilation shows correlations to the **locus coeruleus-norepinephrine system (LC-NE)** a part of the middle brain which is responsible for controlling attention.
 - The correlation with attention control expresses in impact on the **inhibition of return (IOR)**.
A MODEL FOR PUPIL RESPONSE TO EVENTS

B. Hoeks and W. J. Levelt
“Pupillary dilation as a measure of attention: A quantitative system analysis,”
Behavior Research Methods, Instruments, & Computers, vol. 25, no. 1, 1993
NON-LABORATORY PUPIL DILATATION
NON-LABORATORY PUPIL DILATION
NON-LABORATORY PUPIL DILATION
NON-LABORATORY PUPIL DILATION
NON-LABORATORY PUPIL DILATION
ALGORITHM FOR COGNITIVE LOAD DETECTION
A DEMONSTRATOR FOR COGNITIVE LOAD

Source: https://pupil-labs.com.

CONCLUSION

We can determine *when* the best time for an interrupt is and to some degree *how* this is perceived.